MONO- AND OLIGONUCLEAR COMPLEXES BASED ON A O-VANILLIN DERIVED SCHIFF-BASE LIGAND

<u>Ildiko BUTA¹</u>, Sergiu SHOVA², Sorina ILIES¹, Florica MANEA³, Marius ANDRUH⁴, Otilia COSTISOR¹

¹"Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Bvd., 300223-Timisoara, Romania ²"Petru Poni" Institute of Macromolecular Chemistry, Gr. Ghica Voda Ave., 41A, Iasi 700487, Romania ³University Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan Bvd. 300223-Timisoara, Romania

⁴"C. D. Nenitzescu" Institute of Organic Chemistry of the Romanian Academy, Splaiul Independentei 202B, Bucharest, Romania

Introduction

The formation of polynuclear coordination complexes is controlled by the nature of the metal ions, the preorganizing ability of the ligands, as well as the

experimental conditions [1]. Based on the Salen pattern, ligands with greater rigidity [2] or flexibility [3] are obtained when the ethylenebridge was replaced with appropriate "fragments" of molecules. Among these, the bis-N,N-alkylamine piperazine moiety leads to ligands with donor disposed groups symmetrically on each side of piperazine ring, thus offering a large variety of binding possibilities controlled by the conformation of piperazine moiety, as well as the length of the alkyl chain [4].

Coordination mode of piperazine

Results and discussions

1. Crystal structure of H_2L ·2DMSO

 $\circ~$ The Schiff base proligand crystallizes in the zwitterionic form with co-crystalized DMSO

Experimental

The direct metal - ligand reactions between H_2L (N,N'-bis[(3methoxysalicylideneamino)-propyl]piperazine) and corresponding metal salts afford the formation of [CoL](ClO₄) (**1**), [Zn₂L(CH₃COO)₂]·2H₂O (**2**) and [Cu₃L₂(NO₃)₂] (**3**).

 $Cu(NO_3)_2 \cdot 3H_2O + La(NO_3)_3 \cdot 6H_2O - \frac{CH_3CN}{CH_3OH}$

The *in-situ* reaction between *o*-vanillin, 1,4-bis(3-amino-propyl)piperazine and corresponding metal salts led to the polynuclear complex $[LaCu_6L_4(H_2O)_2(NO_3)_2](NO_3)_5 \cdot 15H_2O$ (4).

2Zn(CH₃COO)₂ H₂C

MeOH CH₂CN

molecules in 1:2 ratio.

Molecular structure of H_2L (DMSO molecules are not shown) [symmetry code: i = -x, 1 - y, 1 - z].

2. Crystal structure of [CoL]ClO₄ (1)

- $\circ~L^{2\text{-}}$ anion acts as a hexadentate ligand and wrap the Co^{III} ion in a distorted octahedral coordination geometry. The oxidation of Co^II to Co^III occurs and the coordination of $L^{2\text{-}}$ stabilizes the high oxidation state.
- $\circ~$ Cyclic voltammogram studies show a quasi-reversible behavior of Co^{III}/Co^{II}.

3. Crystal structure of $[Zn_2L(CH_3COO)_2]$ ·2H₂O (2)

• The L²⁻ ligand acts bis-tridentate accommodating two Zn^{II} ions with square pyramidal

4. Crystal structure of [Cu₃L₂(NO₃)₂] (3)

- Compound 3 is a trinuclear complex generated by two L²⁻ ligands in a bridging coordination mode. The peripheral Cu^{II} atoms present square pyramidal geometry, while the central Cu^{II} atom, exhibits a square planar geometry.
- $\,\circ\,\,$ Cyclic voltammogram studies show an irreversible behavior for Cu^{II}/Cu^I.

X-ray molecular structure of **3**. H-atoms are omitted [symmetry code: *i* = 1-*x*, -*y*, 1-*z*].

3D supramolecular structure viewed along *c* axis.

Cyclic voltammogram recorded at GC electrode for **3** in DMSO 10⁻³ M and 0.1 M TBAC

5. Crystal structure of $[LaCu_6L_4(NO_3)_2(H_2O)_2](NO_3)_5 \cdot 15H_2O$ (4)

 $\circ~L^{2\text{-}}$ acts as compartmental ligand by accommodating the Cu^{II} ion in the inner NO site and the La^{III} ion in the external OO' coordination site.

geometry.

Ο

The luminescent investigation shows a strong emission band centered at 476 nm, hypsochromic shifted compared to the emission band observed for the free ligand at 492 nm.

Molecular structure of **4**. H- atoms are omitted for clarity [symmetry code: i = 1 - x, y, 1.5 - z]. Crystal packing viewed along the *c* axis.

References

- 1. F.A.A. Paz, J. Klinowski, S.M.F. Vilela, J.P.C. Tomé, J.A.S. Cavaleiro, J. Rocha, Chem. Soc. Rev. 41 (2012) 1088-1110.
- T. Yu, K. Zhang, Y. Zhao, C. Yang, H. Zhang, L. Qian, D. Fan, W. Dong, L. Chen, Y. Qiu, Inorg. Chim. Acta 361 (2008) 233-244.
- 3. D. Pucci, I. Aiello, A. Bellusci, A. Crispini, M. Ghedini, M. La Deda, Eur. J. Inorg. Chem. (2009) 4274-4281.
- 4. R. Kant, S. Maji, Dalton Trans. 50 (2021) 785-800.

We are thankful to the Romanian Academy, "Coriolan Dragulescu" Institute of Chemistry (Project 4.1.3) for financial support.