HETEROMETALLIC {Fe^{III} $_4$ Na₂} PIVALATE CLUSTER SYNTHESIS AND STRUCTURE CHARACTERISATION

Daniel PODGORNII, Svetlana G. BACA, Victor Ch. Kravtsov

Institute of Applied Physics, Chisinau, Academiei 5, Republic of Moldova

MeCN

WHY DOES THIS RESEARCH MATTER?

Coordination compounds with biological active ions and molecules are of great interest in biotechnology and biomedicine. Coordination compounds such as iron containing enzymes, siderophores, and others are known for their essential role in life processes as oxygen carriers. Coordination chemistry of lithium, sodium and potassium has colossal value due to their remarkable role in different biological mechanisms, especially for cell biology and natural fluids biochemistry some of them being responsible for maintenance of the ionic equilibrium in living bodies and for electrochemical gradients across cell membranes which affect transmission of nerve impulse and regulation of cell functions

SYNTHESIS

 $[Fe_4Na_2O_2(piv)_{10}(MeCN)_2]$ (1) synthetized by refluxing the mixture of hexanuclear iron (III) pivalate, $[Fe_6O_2(OH)_2(piv)_{12}]$ (Hpiv = pivalic acid) and sodium azide NaN₃ in MeCN.

X-RAY CRYSTALLOGRAPHY

The cluster core {Fe₄Na₂} contains two Fe-Fe edge sharing distorted Fe₃Na tetrahedra with μ_4 -O2⁻ bridges inside each tetrahedron. Coordination spheres of Na⁺ ions consist of four O atoms from three pivalate ligands, one μ_4 -O2⁻ moiety and one N atom from capped acetonitrile molecule, resulting in NO₄ distorted trigonal-bipyramidal surrounding. Peripheral ligation of Fe and Na atoms is provided by six bridging in $\eta^1:\eta^1:\mu_2$ mode and four bridging in $\eta^1:\eta^2:\mu_3$ pivalate ligands.

CRYSTAL DATA FOR (1)

 $\blacktriangleright [Fe_4Na_2O_2(piv)_{10}(CH_3CN)_2]$

Crystal system	monoclinic
Space group	Сс
a(Å)	19.3924(9)
b(Å)	19.2415(15)
с(Å)	20.0436(12)
a(°)	90
β (°)	91.136(4)
γ (°)	90
V(Å ³)	7431

BOND DISTANCES FOR COORDINATION POLYHERDA OF (1)

Bond type	Range (Å)
Fe - O	1.847(8) - 2.196(9)
Na - O	2.255(14) - 2.486(10)
Na - N	2.415(16) - 2.549(16)

CONCLUSIONS AND PERSPECTIVE

Using pre-designed μ_3 - oxo hexanuclear Fe(III) pivalate cluster and sodium azide led to formation of heterometallic [Fe₄Na₂O₂(piv)₁₀(MeCN)₂] cluster. Work is in progress to investigate its magnetic properties and the posibility to use obtained cluster as precursor for other bigger molecules.

Acknowledgement: This work has been supported by the State Program of R. Moldova (project ANCD 20.80009.5007.15).