The 13th Edition of the Symposium with International Participation (October 7-8, 2021) New trends and strategies in the chemistry of advanced materials with relevance in biological systems, technique and environmental protection

HOMO- AND HETEROMETALLIC Zn(II) AND Cd(II) COORDINATION POLYMERS CAPABLE OF RETAINING GUEST MOLECULES

Olga DANILESCU¹, Paulina N. BOUROSH², Oleg PETUHOV¹, Olga V. KULIKOVA², Yurii M. CHUMAKOV², Ion BULHAC¹, Lilia CROITOR²

¹Institute of Chemistry, Chisinau, R. Moldova; ²Institute of Applied Physics, Chisinau, R. Moldova

Coordination polymers (CPs) are an attractive area of research in coordination chemistry and crystal engineering due to their intriguing topological architectures and various applications. Schiff bases derived from 2,6-diacetylpyridine are suitable candidates for the development of magnetic homo- and/or heterometallic CPs.

Herein, we present our method for the synthesis of Zn(II) and Cd(II) CPs based on the 2,6-diacetylpyridine bis(nicotinoylhydrazone) Schiff base ligand (H₂L), which led to the obtention of two homo- {[ZnL]·0.5dmf·1.5H₂O}_n (1) and {[CdL]·0.5dmf·H₂O}_n (2) and as well as one heterometallic {[Zn_{0.75}Cd_{1.25}L₂]·dmf·0.5H₂O}_n (3) 2D isostructural and isomorphous coordination layers, where dmf = N,N-dimethylformamide.

The authors are grateful to projects 20.80009.5007.28 and 20.80009.5007.15 financed by NARD of Republic of Moldova.

sensors, thus extending the Zn(II)/Cd(II) family of coordination polymers with impressive sorption-luminescent properties.