NEW TRENDS AND STRATEGIES IN THE CHEMISTRY OF ADVANCED MATERIALS WITH RELEVANCE IN BIOLOGICAL SYSTEMS, TEHNIQUE AND ENVIRONMENTAL PROTECTION

Octomber 07-08, 2021, Timișoara, România

The cyclic adsorption-desorption of CO₂ on KIT-6 and Ni/KIT-6 studied by **Temperature-Programmed Desorption**

Mariana Suba¹, Alexandru Popa¹, Orsina Verdeș¹, Silvana Borcănescu¹, Paul Barvinschi²

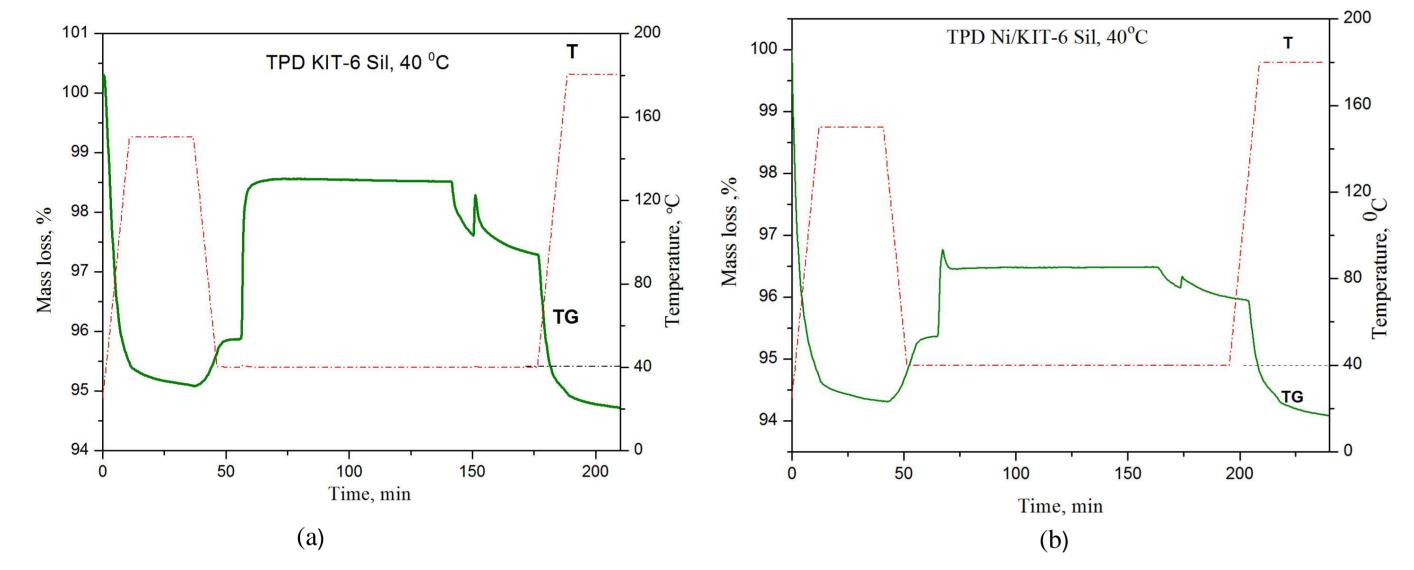
¹ "Coriolan Drăgulescu" Institute of Chemistry, Bl. Mihai Viteazul, No.24, 300223, Timisoara, Romania marianasuba@gmail.com

² Faculty of Physics, West University of Timisoara, Vasile Parvan, No. 4, 300223, Timisoara, Romania

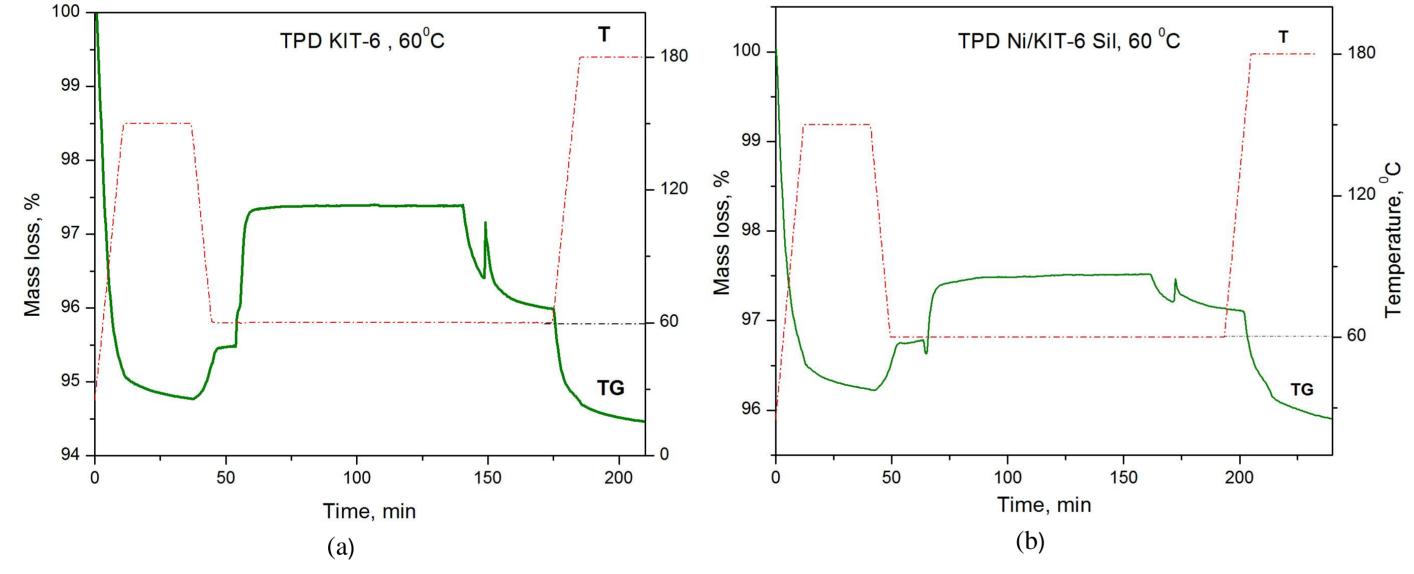
INTRODUCTION

Carbon dioxide is the primary greenhouse gas, responsible for about three-quarters of emissions. It can linger in the atmosphere for thousands of years. Thus, the research directions were directed towards obtaining materials with CO_2 adsorption-desorption properties [1-4].

This study investigates the cyclic adsorption-desorption of CO₂ on KIT-6 sil and Ni/KIT-6 sil by Temperature-Programmed Desorption. The samples were evaluated by the adsorption of CO₂ and its temperature-programmed desorption TPD. Thermal stability was investigated by TGA and DTA methods.


EXPERIMENTAL

KIT-6 mesoporous silica was synthesized following the method described by *Kleitz et al.* [5].


Modified KIT-6 denoted as KIT-6 Sil was prepared as follows: 0.5 g of KIT-6 was dispersed in 50 ml toluene and 0.79 ml of 3-aminopropyl triethoxysilane was added later to the solution. The above mixture was refluxed at 110 °C for 12 h, and then the solid was collected by filtration, washed by ethanol and air-dried at 80 °C. The grafting reaction was carried out at 110 °C for 5 h. After filtration and drying, the absorbents were obtained as white solids. The Ni/KIT-6 Sil was prepared by addition Ni(NO₃) $2 \cdot 6H_2O$ by wet impregnation.

The adsorption of CO_2 and its temperature programmed desorption using thermogravimetry were studied for amino-functionalized molecular sieves at 40 and 60 °C.

RESULTS AND DISCUSION

Fig.1. CO₂ adsorption-desorption steps of functionalized sample KIT-6 Sil (a) and Ni/KIT-6 Sil (b) with an isotherm at 40°C

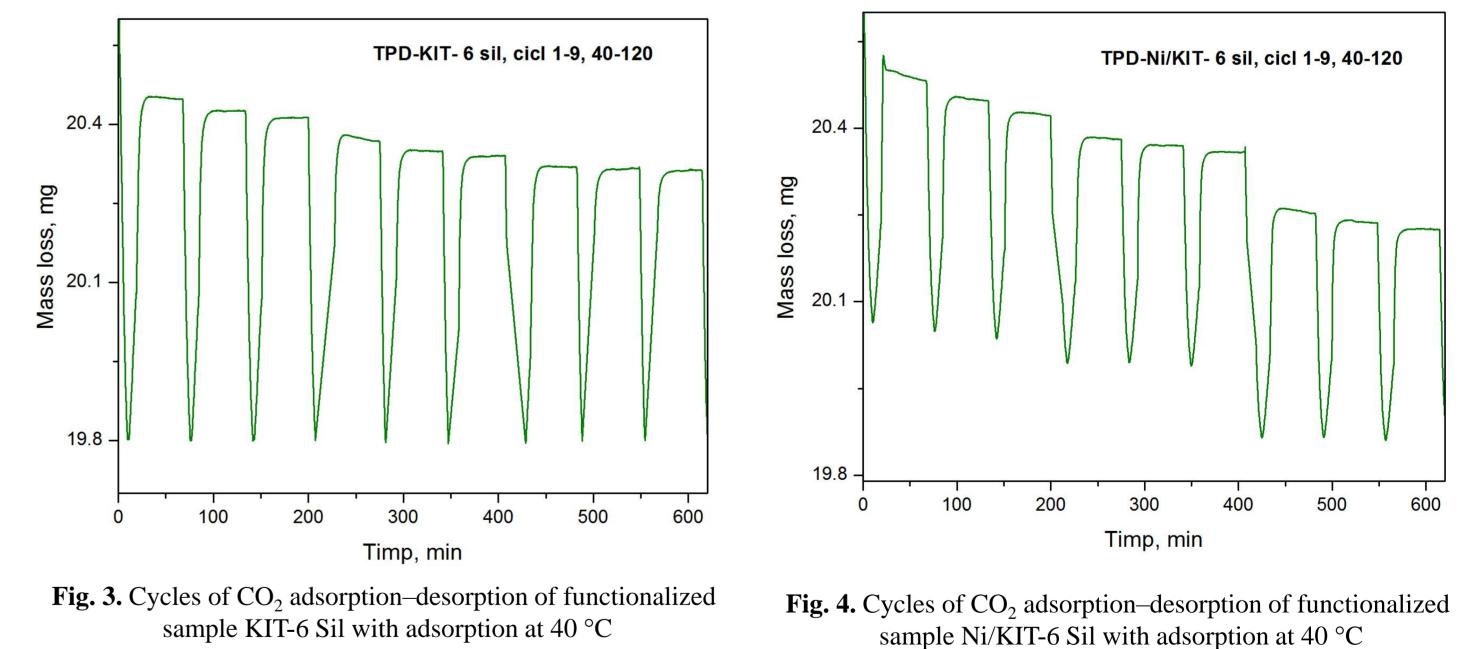
The adsorption capacity of mesoporous silicates KIT-6 Sil and Ni / KIT-6 Sil at different temperatures is given by Fig. 1. and Fig. 2. It is observed that the adsorption capacity decreases by increasing temperatures, a specific phenomenon of physiosorption.

The efficiency of the adsorbent (measured in mmol $CO_2/mmol$ NH_2), was calculated from the mass loss during the desorption step (Table. 1). The adsorption efficiency is an important parameter, since it offers valuable information about the CO_2 adsorption performance of the amino incorporated groups.

Table 1. The amount of the captured CO_2 using KIT – 6 Sil and Ni/KIT-6 Sil

	Sample	Temp [ºC]	n _{co2} /g SiO ₂ [mmol/g SiO ₂]	n _{co2} /n _{NH2} [mmol/mmol]
1	KIT-6 Sil	40	2.23	0.512
2	Ni/KIT-6 Sil	40	1.63	0.188
3	KIT-6 Sil	60	1.31	0.294
4	Ni/KIT-6 Sil	60	1.07	0.115

Fig. 2. CO₂ adsorption-desorption steps of functionalized sample KIT-6 Sil (a) and Ni/KIT-6 Sil (b) with an isotherm at 60° C


The stability of the adsorbent adhesive during prolonged operation for CO₂ capture is an important factor.

Nine cycles of CO_2 adsorption / desorption measurement were performed on grafted samples with the highest CO_2 absorption at 40 ° C, which means that KIT-6 Sil can be used to assess their potential for cycling. Every test was pretreated in N₂ flowing at 120 °C for 10 minutes, then cooled up to 40 °C adsorption temperature and exposed to 30% CO₂ in N₂ for 40 min. CO₂ desorption was per- formed by heating the sample to 120 °C with 10 °C / min.

Temperature is the dominant factor in the adsorption-desorption cycles of the absorbent functionalized with amine due to chemical interactions between CO_2 and amine.

The cycles of CO₂ adsorption–desorption of functionalized sample KIT-6 Sil are shown in Fig. 3. and Ni/KIT-6 Sil are show Fig. 4.

Nickel-based catalysts have been extensively studied in the last years. Nickel is more readily available, active and relatively inexpensive compared to noble metals, i.e. Pt, Pd, Ru, Rh and Ir. [6].

Examination of the adsorption/desorption cycles data shows that the performance of the KIT-6 Sil adsorbent is relatively stable, with the low decrease in the adsorption capacity (0.10 mmol/g of CO₂, i.e., 2.23% of initial capacity) after nine adsorption-desorption cycles and Ni/KIT-6 Sil with the low decrease in the adsorption capacity. (0,30 mmol/g of CO₂, i.e., 1,63% of initial capacity) after nine adsorption-desorption cycles.

CONCLUSIONS

- The preparation by grafting of amino-functionalized KIT 6 molecular sieve by using a silane coupling agent 3-aminopropyl triethoxysilane which was first grafted on the KIT 6.
- The CO₂ adsorption/desorption of KIT-6 Sil showed that both the adsorption capacity (mmoleCO₂/g adsorbent) and the efficiency of amino groups (moleCO₂/mole NH₂) depend on the temperatures. The best results were obtained for KIT-6-Sil at 40 °C.
- After nine adsorption-desorption cycles, the performance of the KIT-6 Sil adsorbent is relatively stable, with a low decrease in the adsorption capacity. In the case of Ni / KIT-6 Sil showed a lower adsorption capacity than KIT-6- Sil.

REFERENCES

- 1. Liu Y., Yu X. Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6, Appl. Energy., (2018) 211, 1080–1088
- 2. Belmabkhout Y., Serna-Guerrero R., Sayari A. Adsorption of CO₂-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Ind. Eng. Chem. Res., (2010) 49(1); 359–365
- 3. Ma B., Zhuang L., Chen, S. Rapid synthesis of tunable-structured short-pore SBA-15 and its application on CO₂ capture, J. Porous Mater., (2016) 23(2); 529–537
- 4. Yılmaz M.S. A Study of CO₂ Adsorption Behaviour and Kinetics on KIT-6, EJOST., (2020) 1948-55.
- 5. F. Kleitz, S. H. Choi, R. Ryoo, Cubic *Ia3d* large mesoupouros silica: Synthesis and replication to palatinum nanowires, carbon nanorods and carbon nanotube, Chem. Commun., (2003) 2136
- 6. Świrk, K., Gálvez, M. E., Motak, M., Grzybek, T., Rønning, M., & Da Costa, P. Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts. International Journal of Hydrogen Energy, (2018), 1-13